Health and Environment Linked for Information Exchange (HELIX)-Atlanta: A CDC-NASA Joint Environmental Public Health Tracking Collaborative Project

Mohammad Al-Hamdan

Bill Crosson, Maury Estes, Ashutosh Limaye, Dale Quattrochi, Doug Rickman, Carol Watts

NASA/MSFC/NSSTC

Judy Qualters, Pamela Meyer

Centers for Disease Control and Prevention

Amanda Niskar
Israel Center for Disease Control

Partners

Kaiser-Permanente Georgia
U.S. Environmental Protection Agency
Georgia Environmental Protection Division
Georgia Division of Public Health
Emory University
Georgia Institute of Technology

HELIX-Atlanta Overview

- ➤ HELIX-Atlanta was developed to support current and future state and local EPHT programs to implement data linking demonstration projects which could be part of the EPHT Network.
- > HELIX-Atlanta is a pilot linking project in Atlanta for CDC to learn about the challenges the states will encounter.
- > NASA/MSFC and the CDC are partners in linking environmental and health data to enhance public health surveillance.
- ➤ The use of NASA technology creates value added geospatial products from existing environmental data sources to facilitate public health linkages.
- > Proving the feasibility of the approach is the main objective

HELIX-Atlanta Challenges

- > Sharing data between agencies with different missions and mindsets
- > Protecting confidentiality of information
- > Ensuring high quality geocoded data
- > Ensuring appropriate spatial and temporal resolutions of environmental data
- > Developing sound resources and methods for conducting data linkages and data analysis

HELIX-Atlanta Respiratory Health Team

RH Team Pilot Data Linkage Project:

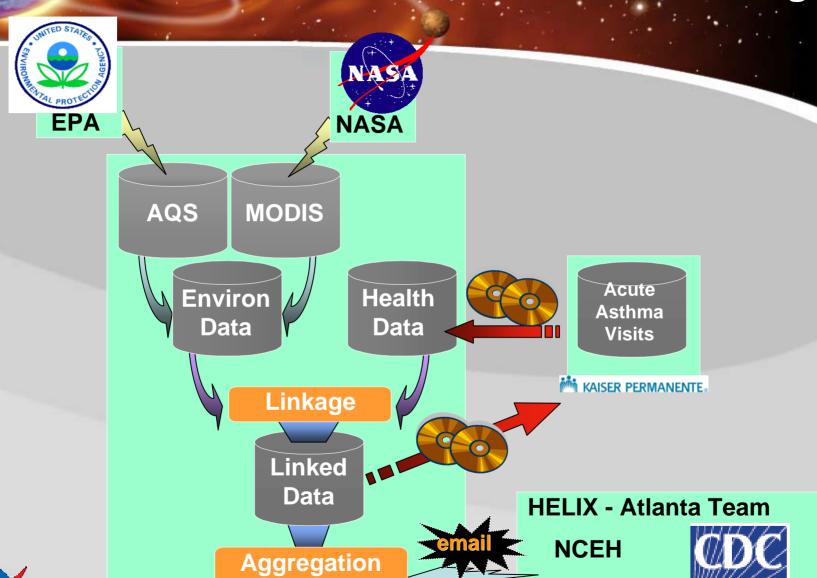
Link environmental data related to ground-level PM_{2.5} (NASA+EPA) with health data related to asthma

Goals:

- 1. Produce and share information on methods useful for integrating and analyzing data on asthma and PM_{2.5} for environmental public health surveillance.
- 2. Generate information and recommendations valuable to sustaining surveillance of asthma with $PM_{2.5}$ in the Metro-Atlanta area.

Environmental Hazard Measure: Daily PM_{2.5}

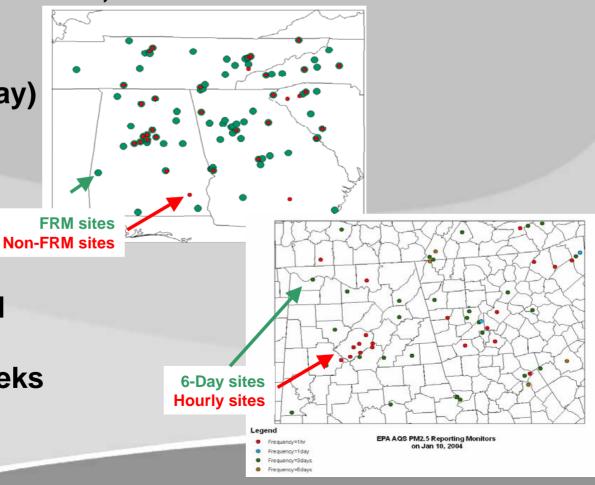
Asthma Measure: Daily acute asthma office visits to KP-GA Medical Facilities


Time period: 2001-2003

Linkage Domain: 5-county metropolitan Atlanta

Data Linkage

EHTB



Sources of PM_{2.5} data: EPA AQS

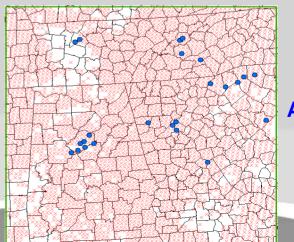
EPA Air Quality System (AQS) ground measurements

- > National network of air pollution monitors
- > Concentrated in urban areas, fewer monitors in rural areas
- ➤ Time intervals range from 1 hr to 6 days (daily meas. every 6th day)
- > Three monitor types:
- Federal Reference Method (FRM)
- Continuous
- Speciation
- ➤ FRM is EPA-accepted standard method; processing time 4-6 weeks

Sources of PM_{2.5} data: MODIS

MODIS Aerosol Optical Depth (AOD)

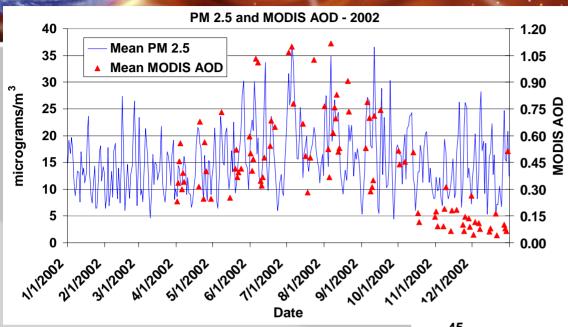
- > AOD is a measure of the total particulate in the atmosphere
- > If atmosphere is well mixed, AOD is a good indicator of surface


$PM_{2.5}$

- > Enhanced Spatial Coverage
- Provided on a 10x10 km grid
- > Available twice per day
- (Terra ~10:30 AM, Aqua ~1:30 PM)
- > Clear-sky coverage only
- > Available since spring 2000

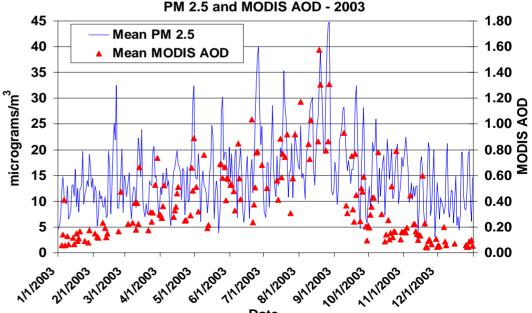
June 25, 2003

AQS



Estimating PM_{2.5} from MODIS data

- > For 2002-2003, obtain MODIS AOD and EPA AQS PM_{2.5} data
- > Extract AOD data for 5 AQS site locations
- ➤ Calculate daily averages from hourly AQS PM_{2.5} data
- \succ Using daily PM_{2.5} averages from all 5 Atlanta AQS sites, determine statistical regression equations between PM_{2.5} and MODIS AOD
- ➤ Apply regression equations to estimate PM_{2.5} for each 10 km grid cell across region


MODIS AOD - PM_{2.5} Relationship

- Daily 5-site means of observed PM_{2.5} and MODIS AOD
- MODIS data not available every day due to cloud cover
- MODIS AOD follows seasonal patterns of PM_{2.5} but not the day-to-day variability in fall and winter

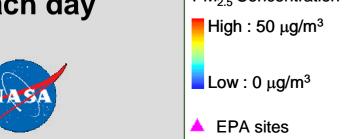
2002

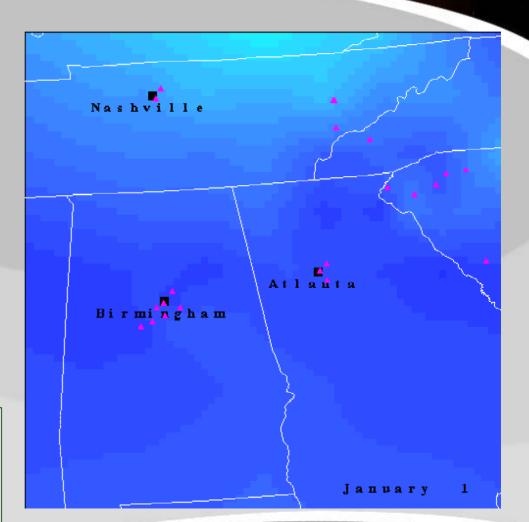
2003

PM 2.5 – MODIS AOD Correlations

April - September MODIS-Terra MODIS-Aqua

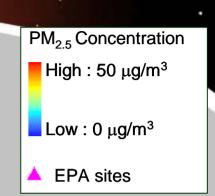
2000>	0.579	
2001>	0.643	
2002>	0.559	0.401
2003>	0.661	0.727

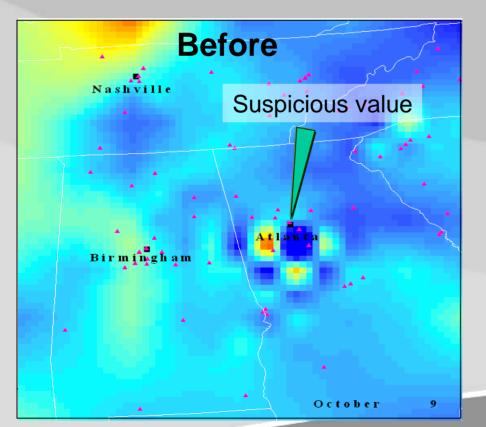

- Correlations between $PM_{2.5}$ and MODIS AOD are generally high (> 0.55) for the warm season.
- The lower correlation for MODIS-Aqua in 2002 is for July-September only.

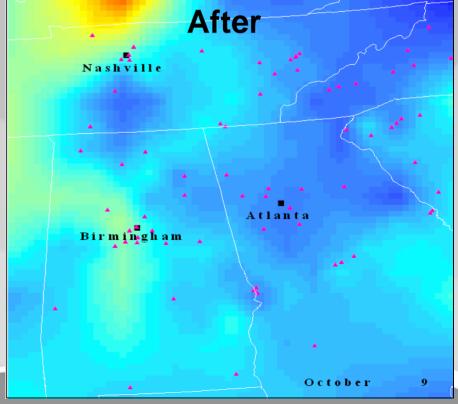


PM2.5 Exposure Assessment- Spatial Surfacing

- > 1st degree recursive Bspline in x- and y-directions
- > Inverse Distance Weighted (IDW)
- > Daily surfaces created on a 10x10 km grid
- > Variable number of measurements available PM_{2.5} Concentration

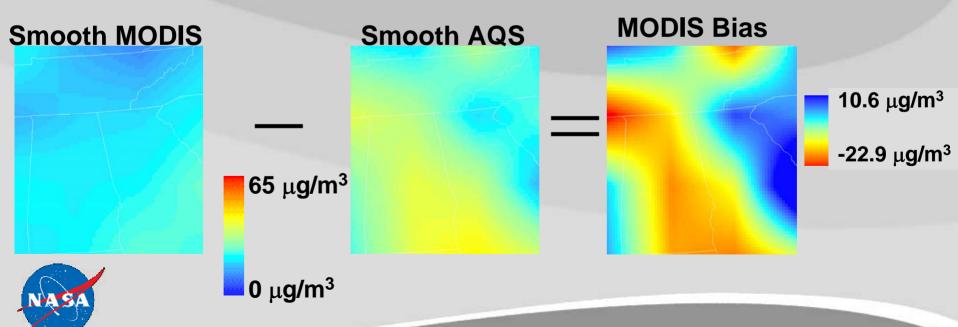

each day



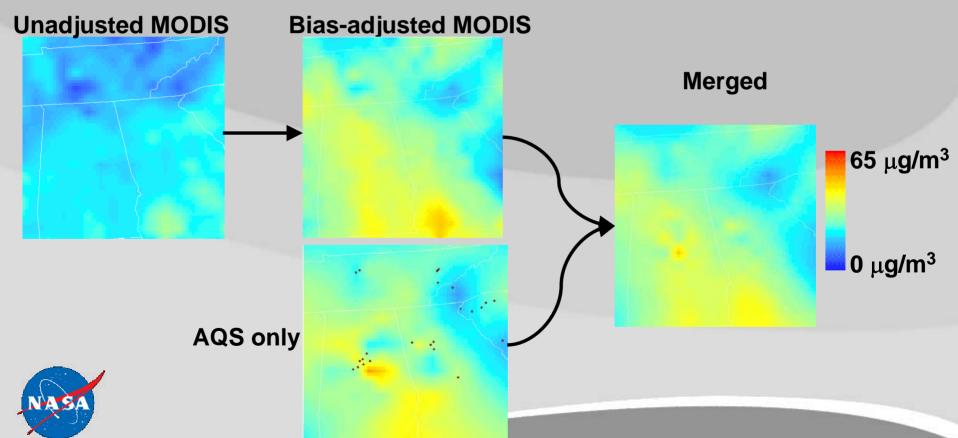


Quality Control Procedure for AQS PM_{2.5} data

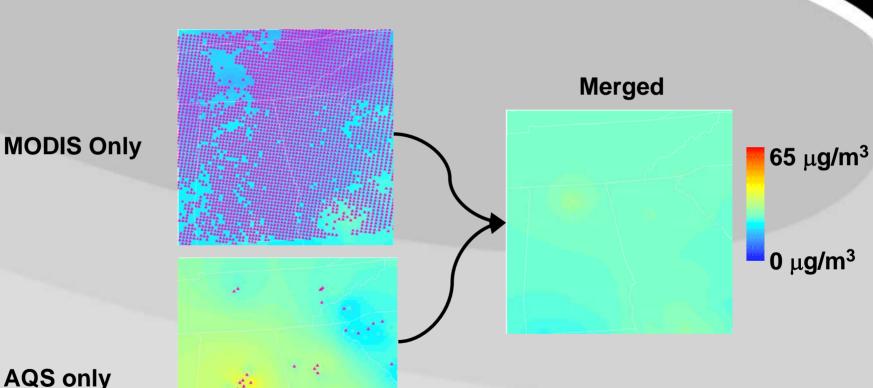
- ➤ Eliminates anomalous measurements based on a non-parametric rank-order spatial analysis
- ➤ Applied to all daily AQS PM_{2.5} measurements before spatial surfaces are built



MODIS PM_{2.5} Bias Adjustment

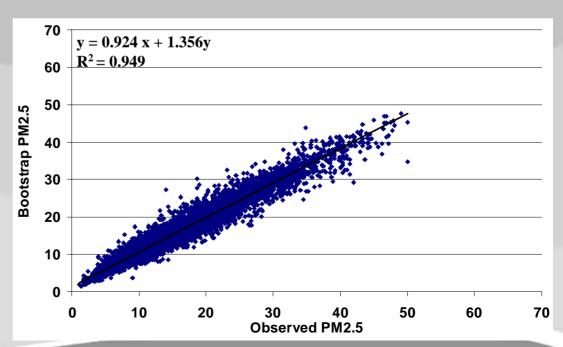

- > Assumption: AQS measurements are unbiased relative to the local mean, but MODIS PM_{2.5} estimates may have biases.
- Procedure:
 - 1. Use a two-step B-spline algorithm to create highly smoothed versions of the MODIS and AQS PM_{2.5} daily surface
 - 2. Compute the 'Bias' as the difference between the smoothed fields
 - 3. Subtract the bias from the MODIS $PM_{2.5}$ daily surface to give the 'bias-corrected' MODIS daily surface

Merging MODIS and AQS PM_{2.5} Data

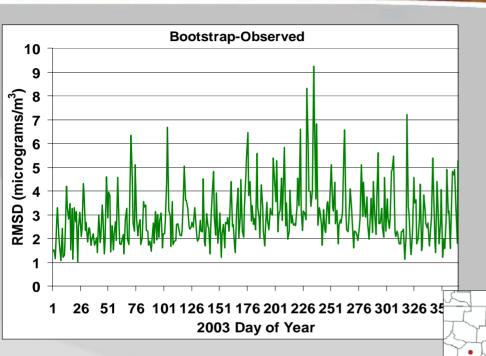

➢ MODIS and AQS data have been merged to produce final PM_{2.5} surfaces.

Merging MODIS and AQS PM_{2.5} Data

IDW Surfacing

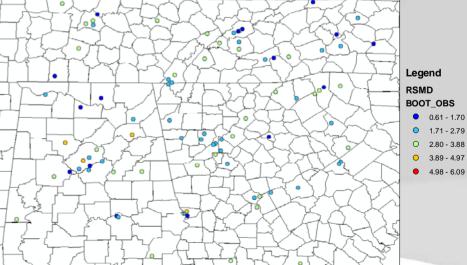


AQS only


Cross-Validation

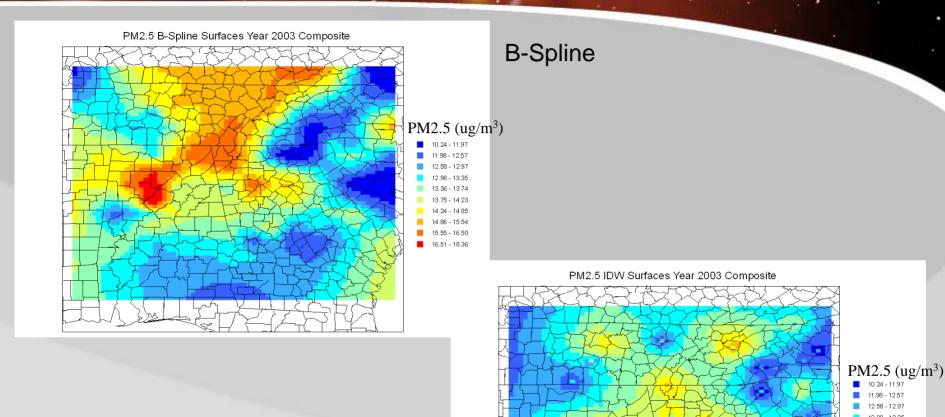
- a.k.a. 'bootstrapping' or 'omit-one' analysis
- Objective: Estimate errors associated with daily spatial surfaces
- Procedure:
 - 1. Omitting one observation, create surface using N-1 observations
 - 2. Compare value of surface at location of omitted observation with
 - the observed value
 - 3. Repeat for all observations
 - 4. Calculate error statistics by day or site




Cross-Validation Error Statistics

RMSD by Site

Surfacing Methods Comparison


Surfacing Technique and Data Source	RMSD (All Days)	RMSD (Warm Season (Days 91-273))
Bspline, AQS only, no QC	3.302	3.556
Bspline, AQS only, with QC	2.927	3.164
IDW, AQS only	2.450	2.686
B-Spline, merged AQS/MODIS	N/A	2.756
IDW, merged AQS/MODIS	N/A	1.613

Surfacing Technique and Data Source	Improvement
Bspline: QC vs. No QC	12 %
Bspline: AQS only vs. merged AQS/MODIS	16 %
IDW: AQS only vs. merged AQS/MODIS	40 %

Annual Composite Surfaces

12.98 - 13.35 13.36 - 13.74 13.75 - 14.23 14.24 - 14.85 14.86 - 15.54 15.55 - 16.50

IDW

Linkage of Environmental and Health Data

Health Data Set

Members

LON	LAT	ID	AGE	GENDER	YEAR/MO
-84.207	99.200	1	Child	M	200301
-84.802	99.359	2	Adult	M	200301
-83.798	99.993	4	Child	F	200301

Acute asthma office visits

ID	AGE	LON	LAT	GENDER	DATE
1811	Child	-84.179	99.118	F	1/1/2003
54767	Adult	-84.625	99.802	F	1/1/2003
84580	Adult	-84.679	99.691	F	1/1/2003

Linkage of Environmental and Health Data

Data Linkage Outputs

Visit counts by grid cell

Date	Cell	PM2.5	FC	MC	FA	MA
200301	l 1	21.74	1	0	2	0
200301	1 2	12.79	0	0	0	0
200301	3	12.21	0	1	0	1

PM_{2.5} for each visit

D	ate	ID	Member	Lat/Lon	Cell	Cell Lat/Lon	County	State	Gender	Age	PM2.5
						99.552 -84.284	•			•	21.74
						99.104 -83.806					12.79
						99.731 -84.403	•				12.21

Successes

- \triangleright Proven the feasibility of linking environmental data (MODIS PM_{2.5} estimates and AQS) with health data (asthma)
- ➤ Developed algorithms for QC, bias removal, merging MODIS and AQS PM_{2.5} data, and others...
- ➤ Negotiated a Business Associate Agreement with a health care provider to enable sharing of Protected Health Information

Team Members and Acknowledgements

Member's Name, Affiliation

- (Co-Chair) Kafayat Adeniyi, Centers for Disease Control and Prevention,
- (Co-Chair) Solomon Pollard, Environmental Protection Agency (EPA), Region 4
- Mohammad Z. Al-Hamdan, National Aeronautics and Space Administration
- Rob Blake, DeKalb County Board of Health
- David Blaney, Georgia Division of Public Health
- Bill Crosson, National Aeronautics and Space Administration
- Kristen Mertz, Georgia Division of Public Health
- Amanda Sue Niskar, Centers for Disease Control and Prevention
- Dale Quattrochi, National Aeronautics and Space Administration
- Amber Sinclair, Kaiser Permanente
- Allison Stock, Centers for Disease Control and Prevention
- Denis Tolsma, Kaiser Permanente
- Linda Thomas, Environmental Protection Agency, Region 4
- Ntale Kajumba, Environmental Protection Agency, Region 4
- Carolyn Williams, Georgia Division of Public Health

Acknowledgments

- Leslie Fierro, Centers for Disease Control and Prevention
- Gabriel Rainisch, Centers for Disease Control and Prevention
 Emily Hansen
 - **HELIX-Atlanta Partners**

Thanks!

Presenter's Contact Information:

Mohammad Z. Al-Hamdan, PhD mohammad.alhamdan@nasa.gov

