

Utility of MODIS Aerosol Optical Depth for Estimating PM_{2.5} Exposure in Public Health Surveillance

Mohammad Al-Hamdan a, William Crosson a, Ashutosh Limaye a, Doug Rickman b, Dale Quattrochi b, Maury Estes a, Kafayat Adeniyi c, Judith Qualters d, Amanda Niskar e

^aUniversities Space Research Association at NASA/MSFC, National Space Science and Technology Center, Huntsville, AL 35805 ^bNASA George C. Marshall Space Flight Center, National Space Science and Technology Center, Huntsville, AL 35805 ^cQuantell, Inc., Atlanta, GA 30333

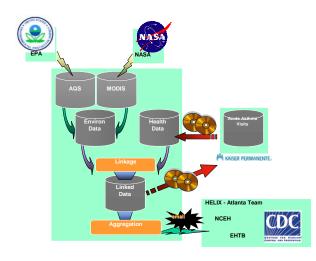
dCenters for Disease Contro and Prevention (CDC), Atlanta, GA 30333

elsrael Center for Disease Control, Tel Hashomer, 52621

INTRODUCTION

Health and Environment Linked for Information Exchange in Atlanta (HELIX-Atlanta) was developed to support current and future state and local environmental public health tracking (EPHT) programs to implement data linking demonstration projects which could be part of the EPHT Network.

> HELIX-Atlanta is a pilot linking project in Atlanta for CDC to learn about the challenges the states will encounter.

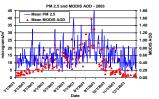

 \succ NASA/MSFC and the CDC are partners in linking environmental and health data to enhance public health surveillance.

> The use of NASA technology creates value – added geospatial products from existing environmental data sources to facilitate public health linkages.

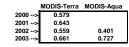
 \succ One of HELIX-Atlanta's teams is a respiratory health team $\,$ (RHT) focusing on asthma.

GOALS

- Link environmental data (MODIS) related to ground-level PM_{2.5} with health data related to asthma.
- Produce and share information on methods useful for integrating and analyzing data on asthma and PM₂₅ for environmental public health surveillance.
- Generate information and recommendations valuable to sustaining surveillance of asthma with PM_{2.5} in the Metro-Atlanta area.


ENVIRONMENTAL DATA SOURCES

U.S. EPA Air Quality System (AQS): Daily PM_{2.5} measurements
NASA EOS Data Gateway: MODIS Aerosol Optical Depth (AOD), used to estimate ground-level PM_{2.5} concentrations.


METHODS

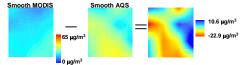
- Obtain MODIS AOD and EPA AQS PM_{2.5} data for 2002-2003.
- Extract AOD data for AQS site locations within Atlanta metropolitan area.
- Calculate daily averages from hourly AQS PM_{2.5} data.
- Determine statistical regression equations between PM_{2.5} and MODIS AOD.
 - Apply regression equations to estimate PM_{2.5} for each 10 km grid cell.
 - Generate daily PM2.5 surfaces using EPA and MODIS-estimated PM2.5 data.
 - Link PM_{2.5} to the acute asthma office visit data.
- Send linked data with individual health information to the health data provider.
- Aggregate the linked data into surfaces of 10 km by 10 km.
- Send the aggregated data set to the CDC and publish for the public.

RESULTS

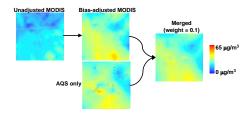
MODIS AOD - PM_{2.5} Relationship: -Daily 5-site means of observed PM_{2.5} and MODIS AOD • MODIS data not available every day due to cloud cover • MODIS AOD follows seasonal patterns of PM_{2.5} but not the dayto-day variability in fall and winter

• Correlations between PM_{2.5} and MODIS AOD are generally high (> 0.55) for the warm season. • The lower correlation for MODIS-Aqua in 2002 is for July-September only.

EPA AQS Data:


Concentrated in urban areas
fewer monitors in rural areas
Time intervals range

from 1 hr to 6 days


MODIS Data: ≻ Provided on a 10x10 km grid ≻ Available twice per day ≻ Clear-sky coverage only

RESULTS continued

 $\succ \text{MODIS PM}_{2.5}$ Bias Adjustment: Assuming AQS measurements are unbiased relative to the local mean, but MODIS PM_{2.5} estimates may have biases.

> Prefer a 'regional-scale' bias adjustment (as opposed to local scale)

>MODIS and AQS data have been merged to produce final PM_{2.5} surfaces. MODIS data are weighted lower than AQS.

>Weights derived through a simplified, time-invariant Kalman filter approach have been derived and applied to the MODIS PM_{2.5} estimates.

 'Bootstrapping' or 'omit-one' analysis
Objective: Estimate errors associated with daily spatial surfaces

surface using N-1 observations

Procedure:
1. Omitting one observation, create

2. Compare v

location of o

the observed 3. Repeat for 4. Calculate e

alue of surface at					
mitted observation with	Surfacing technique and da	ta R ²	Slope	Intercept	
	B-Spline, AQS only, no QC	0.79	5 0.895	1.970	
i value	B-Spline, AQS only, with QC	0.84	0.925	1.447	
all observations	B-Spline, merged AQS/MODIS	0.87	0.925	1.390	
	Surfacing Technique and Data Source	RMSD		RMSD	
error statistics		(All Days)	(Warm S	eason (Days 9	1-273
	Bspline, AQS only, no QC	3.302		3.556	
	Bspline, AQS only, with QC	2.927		3.164	
	B-Spline merged AOS/MODIS	N/A		2.756	

Date	Cell	Lat	Lon	County	State	FC	: 1	мс	F.	A	MA	Simulated example of the linked data set consist	
200301	1	99.045	-87.855	Fulton	GA	0		1	1		0	of visit counts by analysis grid cell. The full data set	
200301	2	99.045	-87.734	Fulton	GA	0		0	()	0	covers the entire year of 2003 and all 4624 grid cells.	
200301	3	99.045	-87.613	Fulton	GA	0		0	~	2	1	F=female, M=male, A=adult, C=child.	
Date	Member	Membe		Cell Lat	/Lon	County	State	Gene	der	Age	PM2.5	Simulated example of the linked data set consisting	
	ID	Lat/Lo	n									of PM values corresponding to the residential	

CONCLUSIONS

This method of estimating PM_{2.5} concentrations by merging MODIS remote sensing data with surface observations of PM_{2.5} not only provides a more complete daily representation of PM_{2.5} than either data set alone would allow, but it also reduces the errors in the PM_{2.5} estimated surfaces with respect to observations. This study has proven the feasibility of linking environmental data (MODIS PM_{2.5} estimates and ground observations) with health data (asthma). The applicability of this method for estimating PM_{2.5} concentrations in other parts of the country and world merits further study.

REFERENCES

Centers for Disease Control and Prevention, Atlanta, GA, HELIX-Atlanta, http://www.cdc.gov/nceh/tracking/helix.htm NASA George C. Marshall Space Flight Center, National Space Science and Technology Center, Huntsville, AL,

NASA George C. Marshall Space Flight Center, National Space Science and Technology Center, Huntsville Health and the Environment, http://weather.msfc.nasa.gov/helix/helix_home1.html

2006 IEEE International Geoscience & Remote Sensing Symposium & 27th Canadian Symposium on Remote Sensing "Remote Sensing: A Natural Global Partnership", Denver, CO, July 31-Aug 4, 2006.

June 24, 2003

MODIS Data: ≻ Provided on a ≻ Available twic