NASA SPoRT Seminar

ARMOR Dual-Polarimetric Radar Data Assimilation with WRF 3DVAR

Xuanli Li and John Mecikalski Department of Atmospheric Sciences UAH

3 Feb 2011

Dual-Polarimetric Radar

 Horizontal and vertical signals: more info about the type, shape, and size of the hydrometeors – more accurate estimates of precip and cloud particles.

Standard Variables from ARMOR:

Z_h: Horizontal reflectivity

V_r: Radial velocity

 Z_{dr} : Differential reflectivity $Z_{dr} = 10 \log 10(Z_h/Z_v)$

 ρ_{hv} :Correlation coefficient, the coefficient between the horizontal and vertical power returns.

 Φ_{dp} :Differential phase, the measured phase shift between horizontal and vertical pulses

 $K_{dp} : Specific differential phase, the range derivative of <math display="inline">\Phi_{dp}$

Sample Data : 23 June 2008

Motivation & Goals

• Only a few works have been done.

Wu et al. (2000) indirectly assimilated Zdr. Jung et al. (2008; 2010) assimilated Zdr, Kdp in OSSEs.

• NWS starts to upgrade current NEXRAD radar network to include dual-polarization capabilities.

 To assimilate dual-pol Doppler radar observations for real cases and seek better performance in radar data assimilation.

• To study how to use radar data more efficiently? What is the best strategy to assimilate dual-pol variables for model initialization? How and by how much could dualpol variables influence the initial fields? How long could the influence last?

Model & Radar Data Assimilation Package

- WRF ARW v3.0
- WRF 3DVAR system
- Warm-rain forward operator
- Cycled assimilation of ARMOR data
- Dual-pol variables:

horizontal reflectivity (Zh) differential reflectivity (Zdr) specific differential phase (Kdp) radial velocity (Vr)

Radar Forward Operator

Radial velocity

$$VR = u \frac{x - x_i}{r_i} + v \frac{y - y_i}{r_i} + (w - v_T) \frac{z - z_i}{r_i}$$

 $v_T = 5.40a \times q_r^{0.125}$

Reflectivity & dual-pol variables

$$Z_{H} = 2.04 \times 10^{4} q_{r}^{1.75}$$
$$\frac{q_{r}}{Z_{H}} = 1.28 \times 10^{-4} Z_{DR}^{-1.94}$$
$$q_{r} = 3.11 \times K_{DP}^{0.918} \times Z_{DR}^{-0.764}$$

Methods

- High resolution (~1 km) comparison experiments:
 - WRF model control run (CTRL)
 - with Zh+Vr assimilation (RF)
 - with Zh+Zdr+Vr assimilation (RD)
 - with Zdr+Kdp+Vr assimilation (KD)
 - Case studies:
 - Tropical Storm Fay remnant (08/25/2008)
 - MCS on 03/15/2008
 - Thunderstorm on 06/23/2008

Results

MCS on 03/15/2008
Impact of ARMOR
radar data assimilation
Impact of Zdr data assimilation

Zdr Data Assimilation: 03/15/2008 MCS

Experiments	Data Assimilation Time	Variables
CTRL	N/A	N/A
RF	0730 UTC, 0800 UTC, and 0830 UTC 15 Mar 2008	Zh and Vr
RD	0730 UTC, 0800 UTC, and 0830 UTC 15 Mar 2008	Zh, Zdr, and Vr

O – B & O – A Comparisons: 03/15/2008 MCS

Radar Reflectivity 0830Z 03/15/2008

Results

Thunderstorm on 06/23/2008 Impact of Zdr+Kdp data assimilation

Kdp+Zdr Data Assimilation: 06/23/2008 Thunderstorm

Experiments	ARMOR Data Assimilation Time	Variables
CTRL	N/A	N/A
RD	1930 UTC, 2000 UTC, and 2030 UTC 23 Jun 2008	ARMOR Zh, Zdr and Vr
KD	1930 UTC, 2000 UTC, and 2030 UTC 23 Jun 2008	ARMOR Kdp, Zdr, and Vr

O – B & O – A Comparisons: Thunderstorm 06/23/2008

Radar Reflectivity 2030Z 06/23/2008

Increment 2030Z 06/23/2008

Vertical Velocity:Thunderstorm 06/23/2008

Forecast Validation

Summary & Conclusions

• Zh, Zdr, Kdp and Vr data have been successfully assimilated with the WRF 3DVAR system.

• Dual-pol variables, Zh+Zdr, Zdr+Kdp assimilation brought additional benefits to storm initialization (compared to when only Zh and Vr data are assimilated)

• Kdp and Zdr data assimilation is superior to Zh and Zdr data assimilation in the initialization of the simulated convective storms Future works:

- Ice-phased processes (wsm3, wsm6) in radar DA
- Formulate relationships between ARMOR variables and liquid/ice water contents
- Investigate strategies for assimilating the dual-pol variables

Publications:

• Li, X., and J. R. Mecikalski (2010), Assimilation of the dual-polarization Doppler radar data for a convective storm with a warm-rain radar forward operator, J. Geophys. Res., 115, D16208, doi:10.1029/2009JD013666.

• Li, X., and J. R. Mecikalski (2010), Impact of the Dual-Polarization Doppler Radar Data on two convective storms with a warm-rain radar forward operator. (Submitted to J.G.R.)