
Disaggregation of microwave remote sensing
data for estimating near-surface

soil moisture using a Neural Network 

Bill Crosson
Charles Laymon

Global Hydrology and Climate Center
National Space Science and Technology Center

Huntsville, Alabama

Marius Schamschula
Center for Applied Optical Sciences

Center for Hydrology, Soil Climatology and Remote Sensing
Alabama A&M University

Normal, Alabama



Objective 

Develop and test a Neural-Network based model for 
disaggregating low-resolution satellite microwave 
measurements to higher resolutions of land surface models,
i.e. estimate the ‘correct’ high (model)-resolution soil 
moisture pattern using lower-resolution remote observations 
and ancillary data



Approach 

How do we train and validate a disaggregation model?

What is ground truth?
• In situ ground truth soil moisture observations are very limited in spatial 
and temporal coverage, limiting our ability to train a neural network.

• Aircraft brightness temperature or emissivity measurements must be 
converted to soil moisture using an inverse model, adding uncertainty to 
the estimates.  These data are also limited in space and time.

• The most viable approach seems to be to train a neural network using 
solely model soil moisture estimates, then test its performance using 
actual remotely-sensed data.

• In this approach, model-simulated data serve as a proxy for microwave 
measurements obtained from aircraft or satellite-borne sensors.



Assumptions 

Our approach necessitates the following assumptions:

1. The surface hydrology-radiative transfer model accurately simulates 
spatial patterns of soil moisture and brightness temperature within an 
actual or hypothetical satellite footprint, although the footprint mean 
may be biased with respect to the ground truth.

2. Low-resolution brightness temperature observations are unbiased
with respect to the ground truth.

3. The functional relationship between brightness temperature and soil 
moisture ‘learned’ by the neural network is consistent with the 
relationship simulated by the radiative transfer model.



SHEELS - Simulator for Hydrology and
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• Accommodates any number of soil layers
• Explicit diffusion schemes for sub-surface moisture and heat fluxes
• Simulates overland runoff
• Linked to radiative transfer model to estimate microwave TB and emissivity



Model study area and data sets 
Model domain -- Little Washita River Basin, OK (600 km2)

Model grid spacing -- 800 m

Terrain slope -- USDA/ARS 30 m DEM, aggregated to 800 m

Hydrography -- USGS DLG's

Vegetation parameters -- SGP'97 30 m Land Cover,
aggregated to 800 m

Soil properties -- CONUS 1 km multi-layer soil
characteristics data set, resampled to 800 m

L band TB -- SGP'97 ESTAR
Surface roughness
Soil moisture
Soil bulk density
Percent sand
Percent clay
Vegetation water content
Vegetation b parameter

Meteorological data -- Oklahoma Mesonet, USDA/ARS Micronet, SGP’97 soil profile stations

Precipitation-- USDA Micronet rain gage network, gridded at 800 m using Thiessen polygons

ESTAR-associated
data sets
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SandSand



Disaggregation Neural Network (Disaggregation Neural Network (DisaggNetDisaggNet))

Design:
• Linear Artificial Neural Network
• Consists of a single neuron

Training and applying using SHEELS-RTM output:
• Hourly data for 15 consecutive days used
• Wide range of soil moisture conditions
• Use model-estimated L-band emissivity, aggregated to various 

resolutions, as proxy for remotely-sensed data
• Neural network obtained through training applied to entire 33-day 

period with Gaussian noise added to emissivity inputs
• Noise has a standard error in emissivity of 0.02, equivalent to 

~ 6 Kelvins in TB or ~ 2% volumetric water content
• Validate with respect to SHEELS high-resolution soil moisture



Applying and testing Applying and testing DisaggNetDisaggNet using SHEELS datausing SHEELS data

DisaggNet

Validate vs. SHEELS high-
resolution soil moisture

SHEELS high-resolution 
(800 m) soil moisture

Inputs (high resolution):
Antecedent precipitation
Sand and clay contents
Vegetation water content
Upstream contributing area

Apply 
Radiative 
Transfer 
Model

DisaggNet-estimated high 
resolution soil moisture

SHEELS high-
resolution emissivity

SHEELS low-
resolution emissivity

Aggregate, 
add noise



DisaggNetDisaggNet vs. SHEELS soil moisture estimatesvs. SHEELS soil moisture estimates
1.6 km and 12.8 km emissivity inputs1.6 km and 12.8 km emissivity inputs

Day 192 - Wet

DisaggNet 1.6 km DisaggNet 12.8 km

SHEELS 0-5 cm Fractional Water Content
(Benchmark)



DisaggNetDisaggNet vs. SHEELS soil moisture estimatesvs. SHEELS soil moisture estimates
1.6 km and 12.8 km emissivity inputs1.6 km and 12.8 km emissivity inputs

Day 184 - Dry

DisaggNet 1.6 km DisaggNet 12.8 km

SHEELS 0-5 cm Fractional Water Content
(Benchmark)



Root Mean Square ErrorsRoot Mean Square Errors
DisaggNetDisaggNet vs. SHEELS soil moisture; 1.6 km inputvs. SHEELS soil moisture; 1.6 km input

Note: fractional water content ≈ 2*volumetric water content.
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Root Mean Square ErrorsRoot Mean Square Errors
DisaggNetDisaggNet vs. SHEELS soil moisture; 12.8 km inputvs. SHEELS soil moisture; 12.8 km input
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Note: fractional water content ≈ 2*volumetric water content.



DisaggNetDisaggNet vs. SHEELS fractional water contentvs. SHEELS fractional water content
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Time-averaged RMSE based on SHEELS-simulated emissivity inputs 
averaged over the indicated number of pixels with Gaussian noise added



DisaggNetDisaggNet vs. SHEELS fractional water contentvs. SHEELS fractional water content
Smoothed scatter plotsSmoothed scatter plots

1.6 km DisaggNet input ( )
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high- and low-resolution inputs, for all grid cells and times.

DisaggNet underestimates FWC under extremely wet conditions.



Applying and testing Applying and testing DisaggNetDisaggNet using ESTAR datausing ESTAR data

ESTAR low-
resolution emissivity

DisaggNet

ESTAR high-resolution
soil moisture

ESTAR high-resolution 
(800 m) emissivity

Inputs (high resolution):
Antecedent precipitation
Sand and clay contents
Vegetation water content
Upstream contributing area

Aggregate

DisaggNet high-
resolution soil moisture

Apply inverse 
Fresnel model

Validate

• No re-training performed
• One ESTAR overpass each 

day for 16 days



DisaggNetDisaggNet results using ESTAR emissivityresults using ESTAR emissivity

DisaggNet 1.6 km

ESTAR 0.8 km
(Benchmark)

SHEELS 0.8 km

0.0       .25       .50       .75        1.0
Fractional water content

Day 192 - Wet

DisaggNet 12.8 km



DisaggNetDisaggNet results using ESTAR emissivityresults using ESTAR emissivity
DisaggNet 1.6 km DisaggNet 12.8 km

SHEELS 0.8 kmESTAR 0.8 km
(Benchmark)

0.0       .25       .50       .75        1.0
Fractional water content

Day 184 - Dry



DisaggNetDisaggNet vs. ESTAR fractional water contentvs. ESTAR fractional water content
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DisaggNetDisaggNet vs. ESTAR fractional water contentvs. ESTAR fractional water content
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ConclusionsConclusions

• DisaggNet was trained using input data simulated by a surface 
hydrology-radiative transfer model.

• DisaggNet is capable of reproducing sub-pixel-scale soil moisture 
patterns from low-resolution remote sensing measurements, plus 
inputs of antecedent precipitation and vegetation, soil and 
topographic properties.

• Using model-simulated data, RMS errors in fractional water content 
were approximately 0.05, much of which is attributable to the noise 
added to the input emissivities.

• RMS errors increase only slightly as input resolution decreases.
• Once trained, DisaggNet was applied to L-band ESTAR emissivity 

measurements.
• RMS errors using ESTAR inputs are similar to errors obtained using 

model-simulated data.
• We plan to make the rainfall-soil moisture relationships non-linear, 

which may improve the performance under very wet conditions.


